“Ask, please,…the winged creatures of the heavens, and they will tell you…. The hand of Jehovah itself has done this.” –Job 12:7-9
Everything about birds appears to be designed for flight. For example, the shafts of wing feathers must support a bird’s entire weight during flight. How can the wings be so light yet so strong? If you cut through the shaft of a feather, you may see why. It resembles what engineers call a foam-sandwich beam. It has a pithy interior and a rough exterior. Engineers have studied feather shafts, and foam-sandwich beams are used in aircraft.The bones of birds are also amazingly designed. Most are hollow, and some may be strengthened by internal struts in a form engineers call the Warren girder. Interestingly, a similar design was used in the wings of the space shuttle.
Pilots balance modern aircraft by adjusting a few flaps on the wings and tail. But a bird uses some 48 muscles in its wing and shoulder to change the configuration and motion of its wings and individual feathers, doing so several times a second. No wonder that avian aerobatic ability is the envy of aircraft designers!
Flight, especially takeoff, consumes a lot of energy. So birds need a powerful, fast-burning “engine.” A bird’s heart beats faster than that of a similar-size mammal and is usually larger and more powerful. Also, a bird’s lungs have a different, one-way-flow design that is more efficient than a mammal’s.
How efficient is a bird’s “engine”? A measure of an aircraft’s efficiency s whether it can take off carrying sufficient fuel. When a Boeing 747 takes off for a ten-hour flight, roughly a third of its weight is fuel. Similarly, a migrating thrush may lose almost half of its body weight on a ten-hour flight. But when a bar-tailed godwit takes off from Alaska heading for New Zealand, over half its body weight is fat. Astonishingly, it flies for about 190 hours (eight days) nonstop. No commercial aircraft can do that.
To learn more, contact Jehovah’s Witnesses locally
Related article is here